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Abstract
We present results on the equation of state (EOS) of high density hydrogen
plasmas. We use a hybrid first principles method capable of describing
fully ionized plasmas. Electrons as well as the electron–ion interactions are
described with Green’s functions technique which includes dynamic screening
and degeneracy effects. The properties of the proton subsystem are calculated
using classical integral equations (HNC) which take strong correlations into
account. We compare our results to a variety of analytic approaches and
simulation techniques.

PACS numbers: 52.25.Kn, 52.27.Aj, 52.27.Gr, 51.30.+i

1. Introduction

Today there exists a great variety of methods to determine the equation of state (EOS) of
nonideal plasmas. Many of them are based on first principles but differ strongly in their
physical and technical approximations [1–7]. As none of these methods and none of further
ones (DFT, DFT-MD, etc) is able to describe the whole parameter space, hybrid techniques,
which are sophisticated combinations of some of the above, become more and more important.
In particular, the description of the complex interplay of correlations, screening and degeneracy
in dense plasmas needs to be studied. We report here a hybrid technique based on first principle
calculations which is capable of describing fully ionized high density plasmas. We show its
capabilities and shortcomings in comparison with other methods.

2. EOS for weakly coupled systems

We consider a multi-component, many-body system consisting of charged particles. In
quantum statistical theory, the pressure p is given by the charging formula [1]

(p − p0)� = −
∫ 1

0

dλ

λ
〈λV 〉, (1)
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with 〈λV 〉 being the mean value of the potential energy in the thermodynamic limit, p0 the ideal
pressure and � the volume of the system. The charging parameter λ changes the interaction
strength from no correlations (λ = 0) to full correlations (λ = 1). In Coulomb systems, the
elementary interaction is modified due to screening. An exact expression for 〈λV 〉 is therefore
given by [1]

〈λV 〉 = 1

2

∑
aσa,bσb

∫
d1dr2

{
λVab(12)Ga(11++)Gb(22+) + V s

ab(12, λ)�ab(121++2+)
}
, (2)

where V s
ab is the dynamically screened potential, �ab is the polarization function and Ga is

the one-particle Green’s function.
Using Feynman diagrams, the following weak coupling expansion for the polarization

function can be given in terms of the dynamically screened potential V s (waved line) [2]

�ab(12) ≈ (3)

This expansion has its origin in the dynamically screened ladder approximation of the
polarization function which in principle avoids the known Coulomb divergencies. All terms
that include up to one screened potential are considered: from left to right, we have the
well-known RPA term, the vertex term as the first ladder contribution, and two topologically
equivalent self-energy terms (self-energy corrections to the RPA). According to the nature of
this expansion all Green’s functions of equations (2) and (3) are now substituted by free single
particle Green’s functions.

The expansion (3) leads to the following expression for the potential energy (2)

〈λV 〉 ≈ 2 . (4)

From left to right, we have the following contributions: the mean field Hartree (H) term, the
quantum exchange or Hartree–Fock (HF) term, the Montroll–Ward (MW) term which includes
screening effects and first nonideality contributions, the normal e4, and anomal e4 exchange
terms. This expansion contains all terms up to the order e4. The MW term includes the
Debye–Hückel (DH) law as the high temperature limit. The last two terms describe exchange
effects of the order e4. They originate from terms with dynamically screened potentials.

Up to now, electrons and ions are treated equally as quantum mechanical particles.
In this way, only the coupling strength but not the degeneracy of the particles limits the
applicability of this approach. For weakly coupled plasmas, this approach is exact; for
moderately coupled systems, it can be considered as a good approximation. The advantages
are especially noticeable for higher densities where the ions (protons) must be described
quantum mechanically, too.

3. EOS including strong ion–ion correlations

Caused by the highly degenerate electrons, plasmas remain fully ionized even for higher
densities. Nevertheless, the ions are often nondegenerate. Since their interaction might be
strong, they must be treated as a liquid embedded in (degenerate) electrons rather than as a
gas. The effect of strong ion–ion correlations is still missing in our EOS.

We include the latter by applying techniques of classical fluid theory for the ion subsystem.
In particular, we solve the Ornstein–Zernicke equation with the hypernetted chain (HNC)
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Figure 1. Pressure of a hydrogen plasma normalized to the ideal pressure as a function of the
density. Our results (e4 – equation (4), e4 + ion-corr – equation (4) + strong proton–proton corr.)
compared to RPIMC results [4], WPMD data [3], OPAL [6], Padé formula [7] and limiting results.

closure relation for a pure one component plasma to get a binary distribution function that
contains strong ion–ion interactions. From the binary distribution function, thermodynamic
variables of state such as pressure or internal energy can be calculated [1]. This ionic
contribution is added to the EOS of the last section (equations (1) and (4)). Since the
nondegenerate weak coupling limit for the ions (Debye–Hückel) is contained in both of the
summands, the DH term is subtracted to avoid double counting.

It turns out that the normal e4 exchange term for the ions as second order contribution
is by far not able to give a good approximation in the case of strong coupling. Moreover, it
leads to an overall poor quality of the expansion whereas the inclusion of only the electron e4

term gives rather good results. Therefore, we keep the electron e4 term to allow for the best
description of degeneracy and coupling in the electron system and add an HNC based ion term
whereas only first and second order quantum effects for the ions are kept in the weak coupling
EOS (equation (4)).

4. Results and comparisons

We discuss the behaviour and the properties of a hydrogen plasma on the basis of the
1.25 × 105 K isotherm of the pressure (figure 1) and the 5 × 104 K isotherm of the internal
energy (figure 2). At low and at very high densities, the thermodynamic functions approach the
ideal gas values for classical and highly degenerate systems, respectively. In the low density
limit, this behaviour is reproduced by most of the methods with satisfactory agreement.
However, such results are not easily achieved at high densities. In this region, our weak
coupling EOS (equations (1) and (4)) can serve as a benchmark for simulations and hybrid
models. Techniques aimed to describe the intermediate density region in a sufficient way
suffer at very high densities from the treatment of the ions as classical particles (e.g., our
EOS including strong ion–ion correlations, wave packet molecular dynamics (WPMD), [3])
are restricted to not so high electron degeneracy (e.g., RPIMC [4], DPIMC [5]) for computer
technical reasons, or are by derivation restricted to lower densities (e.g., OPAL [6]).

At intermediate densities, nonideality contributions to the EOS lower the isotherms. This
behaviour results from a complex interplay of degeneracy, screening and correlations within all
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Figure 2. Internal Energy of a hydrogen plasma normalized to the ideal law as function of the
density. Our results (e4—equation (4), MW + ion correlation—equation (4) + strong proton–proton
correlation) compared to DPIMC results, EIIP (all from [5]) and limiting results.

of the particles. Due to the inclusion of strong ion–ion correlations, we reduce the depth of the
pressure/internal energy minimum of our EOS and achieve better agreement with direct path
integral Monte Carlo (DPIMC) and restricted path integral Monte Carlo (RPIMC) simulations
in the descending branch of the isotherm. Additionally, we are able to calculate our EOS for
higher densities than PIMC as long as the protons behave classically, and we reach surprisingly
good agreement with the effective ion–ion potential method (EIIP) of Trigger et al [5]
as shown in figure 2.
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